Learning with Your Brain

Should what (and how) we teach be associated with what we know about the brain and the nervous system?

Jonathan Karp, Ph.D.
Dept of Biology
5/20/2004

Teaching With the Brain in Mind

Over the last 40 years we have learned more about the human brain than in the previous 400+ years

Educators and neuroscientists have been trying to put this knowledge to work by transforming the information of basic and clinical neurosciences into practical insights for the classroom
There are MANY different theories on how people learn

Neuroscience — learning is based on physical changes in the nervous system

Piaget's Developmental Theory — building of cognitive structures based on age
 - **Behaviorism** — learning is the acquisition of a new behavior
 - **Constructivism** — personal reflection leads to learning
 - **Learning Styles** — learning depends on the educational experience
 - **Multiple Intelligences** — different types of learning abilities exist

Right Brain/Left Brain Thinking — different balances between hemispheres in different people

Communities of Practice — learning is a social phenomenon

Control Theory — behavior is inspired by basic human needs

Social Learning Theory — learning from watching others

Social Cognition — learning/development depends on experience

Adapted from http://www.funderstanding.com

What Types of Things Do Humans & Animals Learn?

Some things learned are **temporary** and some are **retained for life**

What is it about our biology (i.e. brain) that allows us to learn, to recall, and to forget?
Typical Textbook defn: Learning is a change in behavior based on experience

What kinds of things is the human brain designed to learn?

Real Life Examples
What kinds of things is the human brain designed to learn?

Some Learning Come Naturally

Language milestones are associated with dendritic sprouting

Broca’s Area

Textbook picture adapted from Biological Foundations of Language, 1967

The Brain is the Seat of All Learning

Brain Physiology

The brain is made up of billions of nerve cells called neurons. Information is passed from one neuron to the next by an electrochemical process.

Neuron connections are flexible, overlapping, and redundant.

Internal and external stimuli stimulate the formation of pathways and patterns of excited neurons.

Neuronal Patterns

The more frequently pathways or patterns of neurons are used the stronger the pathways and patterns become. The stronger they become the more likely they will be made again.
Brain Areas Contributing to Learning & Memory

- **Hippocampus** – consolidation of long-term memories for spatial location
- **Amygdala** – memory for the emotional significance of experience
- **Inferotemporal cortex** – storage of long-term visual memories
- **Cerebellum and striatum** – implicit sensorimotor memory
- **Prefrontal cortex** – memory for temporal order of events; possible role in the retrieval of memories
- **Mediodorsal nucleus** – damage leads to memory deficits; the medial diencephalic and medial temporal lobes may be in the same memory circuit
- **Basal forebrain** – serves a variety of functions with a controversial role in memory (Ach production)

What is happening in the brain when you ‘learn’ something?

Diagram of the LTP Procedure

High frequency electrical stimulation of the perforant pathway

Record from cells within the dentate gyrus:

Subsequent perforant pathway stimulation results in progressive increases in population PSP’s

LTP may not underlie learning but it is the best model available
LTP is associated with changes in synaptic structure.
“………some neuroscientists are beginning to accuse educators of engaging in pseudoscience or worse, becoming 'snake-oil salesmen' for products and programs that have no real scientific foundation?”

Pamela Wolfe, Ph.D.
Quoted in 2003

Can Learning Change the Human Brain?

Reading intervention can lead to changes in brain development especially in anterior (inferior frontal gyrus) and posterior (middle temporal gyrus) reading systems

Biological Psychiatry 55:926-933, 2004

Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens

Living in an enriched environment as a young mouse provides some protection against the effects of drugs later in life

It is important to remember that all learning is brain-based

Education is practical neuroscience

This does not mean that every teacher needs to become a neuroscientist or memorize 100 neurotransmitters and 50 brain areas responsible for cognition. But it does mean that teachers can become more effective with some knowledge of how the brain senses, processes, stores, and retrieves information.